

Overview
Overview
Chapter Summaries
Chapter 1: Introduction to C# Programming This chapter introduces the basics of C#
programming, including its history, key features, and the structure of a C# program. You'll learn
how to write, compile, and run your first C# program, gaining an understanding of the
development workflow.
Chapter 2: Data Types, Variables, and Operators Explore the fundamental building blocks of
C# programming: data types, variables, and operators. This chapter covers primitive data types,
variable declaration and initialization, various operators, and type conversion techniques.
Chapter 3: Control Flow Statements Learn how to control the flow of your programs using
conditional statements, looping constructs, and jump statements. This chapter explains if-else
conditions, switch cases, for loops, while loops, and the use of break and continue statements.
Chapter 4: Methods and Functions Delve into methods and functions, essential for organizing
and modularizing your code. Topics include method declaration, invocation, overloading,
parameter passing, and return types, providing you with the skills to create reusable and
maintainable code.
Chapter 5: Object-Oriented Programming (OOP) Basics Understand the principles of object-
oriented programming, a core concept in C#. This chapter covers classes, objects, fields,
properties, methods, constructors, destructors, access modifiers, inheritance, and
polymorphism, enabling you to design robust and scalable applications.
Chapter 6: Arrays and Collections Master the use of arrays and collections to handle groups
of data efficiently. You'll learn about single-dimensional and multi-dimensional arrays, and
explore collections such as lists, dictionaries, and other key-value pair structures.
Chapter 7: Exception Handling Gain knowledge on how to handle runtime errors gracefully
using exception handling mechanisms. This chapter covers try, catch, and finally blocks,
throwing exceptions, and creating custom exceptions to ensure your programs can manage
unexpected situations.
Chapter 8: File I/O and Streams Learn to read from and write to files using streams. This
chapter provides an overview of file handling in C#, including reading from and writing to text
files, working with streams, and handling file-related exceptions for robust file I/O operations.
Chapter 9: Basic Understanding of LINQ Discover the power of Language Integrated Query
(LINQ) for querying collections in C#. This chapter introduces LINQ syntax, basic LINQ queries,
and demonstrates how LINQ simplifies data manipulation compared to traditional looping
constructs.
Chapter 10: Basic Concepts of Debugging and Testing Understand essential debugging
techniques and the importance of unit testing. This chapter covers the use of breakpoints, step-
through debugging, and writing unit tests to ensure your code is reliable and free of bugs.
Chapter 11: Introduction to Visual Studio Get familiar with Visual Studio, the powerful IDE for
C# development. Learn how to create, build, and run C# projects, and utilize the debugger to
troubleshoot and refine your applications.

End-of-Chapter Exercises

Each chapter includes multiple-choice questions to test your theoretical understanding, coding
tasks to practice hands-on programming, and problem-solving scenarios to apply your
knowledge in real-world situations.
Appendices and Glossary

The appendices provide additional resources, such as setting up your C# programming
environment, key syntax and commands, and LINQ examples. The glossary defines key terms
and concepts to reinforce your understanding of C# programming.

Conclusion
"C#:Basics to Advanced" equips you with the knowledge and skills to develop robust, efficient,
and scalable applications in C#. Through practical exercises and real-world scenarios, this book
ensures you are well-prepared to tackle challenges in the field of software development. Whether
you're aiming to enhance your career prospects or build innovative projects, this comprehensive
guide is your gateway to mastering C#.

Astro Clare Technology © Genesee County, MI EST 2024

“HELLO CODER”

Welcome to the world of Astro Clare Technology! We are thrilled to present this book to you.
Designed for both aspiring technology enthusiasts and their supportive parents. If you are a
parent who has chosen this book to introduce your child to the exciting field of computer
sciences, we thank you for your trust. Together, you and your child will discover a wealth of
activities that foster learning and growth.
Our mission at Astro Clare Technology is to ignite the spark of curiosity and passion for coding,
programming, and computing technologies in individuals of all ages. We recognize the growing
scarcity of accessible resources over the years and the increasing financial and time challenges
associated with university courses. Therefore, our goal goes beyond simply teaching—you will
embark on a journey to become a skilled and innovative engineer!
Throughout this book, you will develop essential skills and knowledge to advance in your
computing studies and career-readiness.
Thank you for choosing Astro Clare Technology. We are excited to support you on your path to
coding excellence. Put your best code forward!

Sincerely,

Clarence Scott
Clarence Scott
CEO & Founder
Astro Clare Technology

Table of Contents
Chapter 1: Introduction to C# Programming

• Content:
o Introduction to C#
o The structure of a C# program
o Writing, compiling, and running a C# program

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. What is the correct syntax to write a "Hello, World!" program in C#?

2. Which IDE is commonly used for C# development?
o Coding Tasks:

3. Write a C# program that prints "Welcome to C# Programming!"
o Problem-Solving Scenarios:

4. Explain how you would set up your development environment for C#
programming.

Chapter 2: Data Types, Variables, and Operators
• Content:

o Primitive data types
o Variable declaration and initialization
o Operators in C#
o Type conversion

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. What is the default value of an int variable in C#?

2. Which operator is used for division in C#?
o Coding Tasks:

3. Write a C# program to swap the values of two variables.
o Problem-Solving Scenarios:

4. Describe a scenario where type conversion might be necessary and how
you would handle it in C#.

Chapter 3: Control Flow Statements
• Content:

o Conditional statements
o Looping statements
o Jump statements

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. Which loop is guaranteed to execute at least once?

2. What is the purpose of the break statement?
o Coding Tasks:

3. Write a program that finds the factorial of a number using a for loop.
o Problem-Solving Scenarios:

4. Design a flowchart for a program that checks if a number is prime.

Chapter 4: Methods and Functions
• Content:

o Method declaration and invocation
o Method overloading
o Parameter passing
o Return types

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. How do you declare a method in C# that does not return a value?

2. What is method overloading?
o Coding Tasks:

3. Write a method that takes two integers and returns their sum.
o Problem-Solving Scenarios:

4. Explain the difference between passing parameters by value and by
reference with examples.

Chapter 5: Object-Oriented Programming (OOP) Basics
• Content:

o Classes and objects
o Fields, properties, and methods

o Constructors and destructors
o Access modifiers
o Inheritance and polymorphism

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. What is the purpose of a constructor in C#?

2. Which keyword is used to inherit a class in C#?
o Coding Tasks:

3. Create a class Person with fields for name and age, and a method that
prints the person's details.

o Problem-Solving Scenarios:

4. Design a simple inheritance hierarchy for a school management system.

Chapter 6: Arrays and Collections
• Content:

o Single-dimensional and multi-dimensional arrays
o Collections in C#
o Basic operations on collections

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. How do you declare a single-dimensional array in C#?

2. Which collection allows for key-value pairs?
o Coding Tasks:

3. Write a program to sort an array of integers.
o Problem-Solving Scenarios:

4. Explain a scenario where a Dictionary<TKey, TValue> would be more
appropriate than a List<T>.

Chapter 7: Exception Handling
• Content:

o Try, catch, finally blocks
o Throwing exceptions
o Custom exceptions

• End-of-Chapter Exercises:

o Multiple-Choice Questions:

1. What is the purpose of the finally block?

2. How do you throw an exception in C#?
o Coding Tasks:

3. Write a program that handles divide-by-zero exceptions.
o Problem-Solving Scenarios:

4. Design a custom exception class for handling invalid user input.

Chapter 8: File I/O and Streams
• Content:

o Reading from and writing to files
o Working with streams
o Handling file exceptions

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. Which class is used for reading text from a file?

2. How do you handle file not found exceptions?
o Coding Tasks:

3. Write a program to read a text file and print its content to the console.
o Problem-Solving Scenarios:

4. Explain how you would handle large files efficiently in C#.

Chapter 9: Basic Understanding of LINQ
• Content:

o Introduction to LINQ
o Basic LINQ queries
o Using LINQ with collections

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. What does LINQ stand for?

2. Which method is used to filter a collection in LINQ?
o Coding Tasks:

3. Write a LINQ query to find all even numbers in a list.
o Problem-Solving Scenarios:

4. Explain how LINQ can simplify querying collections compared to
traditional loops.

Chapter 10: Basic Concepts of Debugging and Testing
• Content:

o Debugging techniques
o Writing unit tests

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. What is the purpose of a breakpoint in debugging?

2. Which framework is commonly used for unit testing in C#?
o Coding Tasks:

3. Write a simple unit test for a method that adds two numbers.
o Problem-Solving Scenarios:

4. Explain a scenario where debugging helped you find and fix a critical bug.

Chapter 11: Introduction to Visual Studio
• Content:

o Overview of the Visual Studio IDE
o Creating, building, and running a C# project
o Using the debugger

• End-of-Chapter Exercises:
o Multiple-Choice Questions:

1. How do you create a new project in Visual Studio?

2. Which window is used to view the call stack during debugging?
o Coding Tasks:

3. Create a new console application in Visual Studio and write a simple
"Hello, World!" program.

o Problem-Solving Scenarios:

4. Explain how you would use Visual Studio to debug a complex application.

5.

Appendix

Glossary

Chapter 1: Introduction to C# Programming
Introduction to C#
C# (pronounced as "C sharp") is a modern, versatile programming language developed by
Microsoft. It is widely used for building various types of applications, from desktop software to
web applications and games. C# is known for its simplicity, type-safety, and strong support for
object-oriented programming concepts.

The Structure of a C# Program
A C# program is structured into classes, methods, statements, expressions, and variables. At its
core, every C# application starts with a Main method, which serves as the entry point for the
program execution. Here’s a basic structure of a simple C# program that prints "Hello, World!":
using System;

class HelloWorld
{
 static void Main()
 {
 Console.WriteLine("Hello, World!");
 }
}

Writing, Compiling, and Running a C# Program
To write a C# program, you typically use an Integrated Development Environment (IDE) such as
Visual Studio, Visual Studio Code, or JetBrains Rider. These IDEs provide a user-friendly
interface for writing code, managing projects, and debugging applications.

After writing your C# code, you compile it into an executable format. The compilation process
translates your human-readable C# code into machine-readable instructions that the computer
can execute. In C#, this is done using the C# compiler (csc.exe).

Once compiled, you can run the C# program either from within the IDE or from the command
line. Running the program executes the instructions you've written, producing the desired output
or performing the intended tasks.

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. What is the correct syntax to write a "Hello, World!" program in C#?
o A) print("Hello, World!");
o B) System.out.println("Hello, World!");
o C) Console.WriteLine("Hello, World!");
o D) writeLine("Hello, World!");

2. Which IDE is commonly used for C# development?
o A) Eclipse

o B) IntelliJ IDEA
o C) Visual Studio
o D) Sublime Text

Coding Tasks:
1. Write a C# program that prints "Welcome to C# Programming!" to the console.

using System;

class WelcomeProgram
{
 static void Main()
 {
 Console.WriteLine("Welcome to C# Programming!");
 }
}

Problem-Solving Scenarios:
1. Explain how you would set up your development environment for C# programming.

o To set up a development environment for C# programming, follow these steps:
▪ Choose an IDE: Select an IDE such as Visual Studio, Visual Studio

Code, or JetBrains Rider.
▪ Install .NET SDK: Download and install the .NET Software Development

Kit (SDK) from the official .NET website.
▪ Create a Project: Use your chosen IDE to create a new C# project.

Choose the type of application you want to build (e.g., Console
Application, Web Application).

▪ Write and Run Code: Write your C# code in the IDE. Use the IDE's build
and run commands to compile and execute your program.

▪ Debugging: Learn to use the debugging tools provided by the IDE to
identify and fix errors in your code.

Chapter 2: Data Types, Variables and Operators
Primitive Data Types
In C#, primitive data types represent the most basic types of data that the language supports.
These include:

• Integer Types: int, long, short, byte, sbyte, uint, ulong, ushort
• Floating-Point Types: float, double, decimal
• Character Type: char
• Boolean Type: bool

Each data type has specific ranges and uses, depending on the size and precision required for
storing data.

Variable Declaration and Initialization
Variables in C# are containers that hold data of a specific type. To declare a variable, you specify
the type followed by the variable name. Variables must be initialized before they can be used.

int age; // Declaration
age = 30; // Initialization

You can also declare and initialize a variable in a single statement:

double pi = 3.14;

Operators in C#
Operators are symbols that perform operations on variables and values. C# supports various
types of operators:

• Arithmetic Operators: +, -, *, /, %
• Relational Operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !
• Assignment Operators: =, +=, -=, *=, /=, %=
• Increment and Decrement Operators: ++, --
• Bitwise Operators: &, |, ^, ~, <<, >>

Type Conversion
Type conversion (also known as casting) in C# is the process of converting a value from one data
type to another. Implicit conversion is done automatically by the compiler when there is no risk
of data loss. Explicit conversion requires explicit casting and may involve data loss.

int num1 = 10;
double num2 = 5.5;

int result = num1 + (int)num2; // Explicit casting from double to int

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. What is the default value of an int variable in C#?
o A) 0
o B) 1
o C) null
o D) undefined

2. Which operator is used for division in C#?
o A) +
o B) -
o C) *
o D) /

Coding Tasks:
1. Write a C# program to swap the values of two variables.

using System;

class SwapProgram
{
 static void Main()
 {
 int a = 10;
 int b = 20;

 Console.WriteLine($"Before swapping: a = {a}, b = {b}");

 // Swap logic
 int temp = a;
 a = b;
 b = temp;

 Console.WriteLine($"After swapping: a = {a}, b = {b}");
 }
}

Problem-Solving Scenarios:

1. Describe a scenario where type conversion might be necessary and how you would
handle it in C#.

o Scenario: You have an application that calculates the total price of items in a
shopping cart. The price of each item is stored as a double, but you need to

display the total price as an int (assuming you want to round down to the nearest
integer).

o Handling Type Conversion: In this scenario, you would use explicit casting
((int)) to convert the double total price to an int:

double totalPrice = 49.99; // Example total price
int totalAsInt = (int)totalPrice;

This conversion ensures that the total price is displayed as an integer, which might
be necessary for certain presentation or calculation requirements.

Chapter 3: Control Flow Statements
Conditional Statements
Conditional statements in C# allow you to execute different blocks of code based on whether a
certain condition is true or false. The main conditional statements include:

• if Statement: Executes a block of code if a specified condition is true.

int num = 10;
if (num > 0)
{
 Console.WriteLine("Number is positive.");
}

• else Statement: Executes a block of code if the same condition is false.

int num = -5;
if (num > 0)
{
 Console.WriteLine("Number is positive.");
}
else
{
 Console.WriteLine("Number is not positive.");
}

• else if Statement: Allows you to specify a new condition to test if the previous
condition is false.

int num = 0;
if (num > 0)
{
 Console.WriteLine("Number is positive.");
}
else if (num < 0)
{
 Console.WriteLine("Number is negative.");
}
else
{
 Console.WriteLine("Number is zero.");
}

Looping Statements
Looping statements in C# are used to execute a block of code repeatedly as long as a specified
condition is true. Types of loops include:

• for Loop: Executes a block of code a specified number of times.

for (int i = 1; i <= 5; i++)
{
 Console.WriteLine(i);
}

• while Loop: Executes a block of code as long as a specified condition is true.

int i = 1;
while (i <= 5)
{
 Console.WriteLine(i);
 i++;
}

• do-while Loop: Similar to a while loop, but it always executes the block of code at
least once before checking the condition.

int i = 1;
do
{
 Console.WriteLine(i);
 i++;
}
while (i <= 5);

Jump Statements
Jump statements in C# allow you to transfer control to another part of the program. Types of
jump statements include:

• break Statement: Terminates the loop or switch statement and transfers control to the
statement immediately following the loop or switch.

for (int i = 1; i <= 10; i++)
{
 if (i == 5)
 break;
 Console.WriteLine(i);
}

• continue Statement: Skips the current iteration of a loop and continues with the next
iteration.

for (int i = 1; i <= 5; i++)
{
 if (i == 3)
 continue;
 Console.WriteLine(i);
}

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. Which loop is guaranteed to execute at least once?
o A) for loop
o B) while loop
o C) do-while loop
o D) foreach loop

2. What is the purpose of the break statement?
o A) To skip the current iteration of a loop
o B) To terminate a loop or switch statement
o C) To transfer control to another part of the program
o D) To check if a condition is true or false

Coding Tasks:
1. Write a C# program that finds the factorial of a number using a for loop.

using System;

class FactorialProgram
{
 static void Main()
 {
 Console.Write("Enter a number: ");
 int number = Convert.ToInt32(Console.ReadLine());

 int factorial = 1;
 for (int i = 1; i <= number; i++)
 {
 factorial *= i;
 }

 Console.WriteLine($"Factorial of {number} is: {factorial}");
 }
}

Problem-Solving Scenarios:

1. Design a flowchart for a program that checks if a number is prime.
o Flowchart Description: A flowchart to check if a number is prime would

typically involve starting with the number to be checked (n). You would then
iterate through potential divisors from 2 up to the square root of n. For each
divisor, check if n is divisible by the divisor without a remainder (n % divisor
== 0). If n is divisible by any number other than 1 and itself, then it is not prime.
Otherwise, it is prime.

o Example Flowchart:

This flowchart illustrates the logical steps involved in determining whether a
given number n is prime or not, based on the described algorithm.

Chapter 4: Methods and Functions
Method Declaration and Invocation
Methods in C# are blocks of code that perform a specific task. They are declared within a class
and can be invoked (called) to execute the code inside them. A method declaration includes the
method's access modifier, return type, name, parameters (if any), and body.

public class Calculator
{
 // Method declaration
 public void Add(int a, int b)
 {
 int sum = a + b;
 Console.WriteLine($"Sum of {a} and {b} is: {sum}");
 }

 // Method invocation
 public static void Main()
 {
 Calculator calc = new Calculator();
 calc.Add(5, 3); // Calling the Add method
 }
}

Method Overloading
Method overloading in C# allows you to define multiple methods with the same name but
different parameters. This enables you to use the same method name for different behaviors
based on the types or number of parameters passed.

public class OverloadExample
{
 // Method with same name but different parameter types
 public void Display(int num)
 {
 Console.WriteLine($"Integer number: {num}");
 }

 public void Display(double num)
 {
 Console.WriteLine($"Double number: {num}");
 }

 // Method with same name but different number of parameters
 public void Display(string message)
 {
 Console.WriteLine($"Message: {message}");
 }

 public void Display(string message, int times)
 {
 for (int i = 0; i < times; i++)
 {
 Console.WriteLine($"Message {i + 1}: {message}");

 }
 }

 public static void Main()
 {
 OverloadExample example = new OverloadExample();
 example.Display(10);
 example.Display(3.5);
 example.Display("Hello, world!");
 example.Display("Hi there!", 3);
 }
}

Parameter Passing
Parameters in C# methods allow you to pass data into the method for processing. There are two
ways to pass parameters: by value and by reference.

• Passing Parameters by Value: The default method of passing parameters in C#. A
copy of the parameter's value is passed to the method. Changes made to the parameter
inside the method do not affect the original value outside the method.

• Passing Parameters by Reference: Allows a method to modify the value of the
parameter. The ref keyword is used to indicate that a parameter is passed by reference.

public class ParameterExample
{
 public void Increment(int num)
 {
 num++;
 Console.WriteLine($"Inside Increment method: {num}");
 }

 public void IncrementByRef(ref int num)
 {
 num++;
 Console.WriteLine($"Inside IncrementByRef method: {num}");
 }

 public static void Main()
 {
 ParameterExample example = new ParameterExample();

 int number = 5;
 example.Increment(number); // Passing by value
 Console.WriteLine($"Outside method after Increment: {number}");

 example.IncrementByRef(ref number); // Passing by reference
 Console.WriteLine($"Outside method after IncrementByRef: {number}");
 }
}

Return Types
The return type specifies the type of data that a method can return to its caller. If a method does
not return a value, its return type is void.

public class Calculation
{
 public int Add(int a, int b)
 {
 return a + b;
 }

 public void DisplayMessage(string message)
 {
 Console.WriteLine(message);
 }

 public static void Main()
 {
 Calculation calc = new Calculation();
 int sum = calc.Add(5, 3);
 calc.DisplayMessage($"Sum is: {sum}");
 }
}

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. How do you declare a method in C# that does not return a value?
o A) void methodName() { }
o B) int methodName() { }
o C) double methodName() { }
o D) string methodName() { }

2. What is method overloading?
o A) Defining multiple methods with the same name but different return types.
o B) Defining multiple methods with the same name but different parameter types

or number.
o C) Defining multiple methods with different access modifiers.
o D) Defining multiple methods within the same class.

Coding Tasks:
1. Write a method that takes two integers and returns their sum.

using System;

public class MathOperations
{
 public int Sum(int a, int b)
 {
 return a + b;
 }

 public static void Main()

 {
 MathOperations math = new MathOperations();
 int result = math.Sum(10, 5);
 Console.WriteLine($"Sum of 10 and 5 is: {result}");
 }
}

Problem-Solving Scenarios:

1. Explain the difference between passing parameters by value and by reference with
examples.

o Passing Parameters by Value: Copies the actual value of an argument into
the parameter of the function. Changes made to the parameter inside the function
have no effect on the argument.

o Passing Parameters by Reference: Passes a reference to the memory
location of the actual argument, allowing the function to modify the parameter,
which in turn modifies the argument.

public class ParameterExample
{
 public void Increment(int num)
 {
 num++;
 Console.WriteLine($"Inside Increment method: {num}");
 }

 public void IncrementByRef(ref int num)
 {
 num++;
 Console.WriteLine($"Inside IncrementByRef method: {num}");
 }

 public static void Main()
 {
 ParameterExample example = new ParameterExample();

 int number = 5;
 example.Increment(number); // Passing by value
 Console.WriteLine($"Outside method after Increment: {number}");

 example.IncrementByRef(ref number); // Passing by reference
 Console.WriteLine($"Outside method after IncrementByRef:
{number}");
 }
}

In the example above, Increment method increments num locally, and changes do not
affect number outside the method. IncrementByRef method, using ref keyword,
modifies number directly, reflecting changes outside the method as well.

Chapter 5: Object-Oriented Programming (OOP) Basics
Classes and Objects
In C#, a class is a blueprint for creating objects. An object is an instance of a class that
encapsulates data (fields) and behavior (methods). Classes define the structure and behavior of
objects.

public class Person
{
 // Fields
 public string Name;
 public int Age;

 // Method
 public void PrintDetails()
 {
 Console.WriteLine($"Name: {Name}, Age: {Age}");
 }
}

public class Program
{
 public static void Main()
 {
 // Creating an object (instance) of Person class
 Person person1 = new Person();
 person1.Name = "John";
 person1.Age = 30;

 // Calling method to print details
 person1.PrintDetails();
 }
}

Fields, Properties, and Methods
• Fields: Variables inside a class that hold data for each object.
• Properties: Accessors for private fields, allowing controlled access to data.
• Methods: Functions inside a class that define the behavior of objects.

Constructors and Destructors
• Constructors: Special methods used to initialize objects. They have the same name as

the class and can be overloaded.
• Destructors: Cleanup methods (rarely used in C#), invoked when an object is

destroyed.

public class Person
{

 // Fields
 public string Name;
 public int Age;

 // Constructor
 public Person(string name, int age)
 {
 Name = name;
 Age = age;
 }

 // Destructor (not commonly used in C#)
 ~Person()
 {
 // Cleanup code
 }

 // Method
 public void PrintDetails()
 {
 Console.WriteLine($"Name: {Name}, Age: {Age}");
 }
}

Access Modifiers
Access modifiers control the visibility and accessibility of classes, fields, properties, and
methods within a program.

• Public: Accessible from any other class or assembly.
• Private: Accessible only from within the same class.
• Protected: Accessible from within the same class or derived classes.
• Internal: Accessible only within the same assembly.
• Protected Internal: Accessible within the same assembly or from a derived class in

another assembly.

Inheritance and Polymorphism
• Inheritance: Mechanism by which one class (derived class) inherits properties and

behavior from another class (base class).
• Polymorphism: Ability of objects to take on multiple forms. Achieved through method

overriding and method overloading.

public class Person
{
 public string Name;
 public int Age;

 public void PrintDetails()
 {
 Console.WriteLine($"Name: {Name}, Age: {Age}");
 }
}

public class Student : Person
{
 public int StudentID;

 public void Study()
 {
 Console.WriteLine($"{Name} is studying.");
 }
}

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. What is the purpose of a constructor in C#?
o A) To destroy an object
o B) To initialize an object
o C) To define inheritance
o D) To define polymorphism

2. Which keyword is used to inherit a class in C#?
o A) new
o B) this
o C) base
o D) :

Coding Tasks:
1. Create a class Person with fields for Name and Age, and a method that prints the

person's details.

using System;

public class Person
{
 // Fields
 public string Name;
 public int Age;

 // Method to print details
 public void PrintDetails()
 {
 Console.WriteLine($"Name: {Name}, Age: {Age}");
 }
}

public class Program
{
 public static void Main()
 {
 // Create an object of Person class
 Person person1 = new Person();

 person1.Name = "Alice";
 person1.Age = 25;

 // Call method to print details
 person1.PrintDetails();
 }
}

Problem-Solving Scenarios:

1. Design a simple inheritance hierarchy for a school management system.
o Inheritance Hierarchy Example:

public class Person
{
 public string Name;
 public int Age;

 public void PrintDetails()
 {
 Console.WriteLine($"Name: {Name}, Age: {Age}");
 }
}

public class Student : Person
{
 public int StudentID;
 public int GradeLevel;

 public void Study()
 {
 Console.WriteLine($"{Name} is studying.");
 }
}

public class Teacher : Person
{
 public string SubjectTaught;

 public void Teach()
 {
 Console.WriteLine($"{Name} is teaching
{SubjectTaught}.");
 }
}

In this example, Student and Teacher classes inherit from the Person class,
inheriting the Name and Age fields and the PrintDetails() method. Additionally,
Student and Teacher have their specific fields (StudentID, GradeLevel for
Student; SubjectTaught for Teacher) and methods (Study() for Student;
Teach() for Teacher).

Chapter 6: Arrays and Collections
Single-Dimensional and Multi-Dimensional Arrays
Arrays in C# are used to store multiple values of the same data type sequentially. They can be
single-dimensional or multi-dimensional.

• Single-Dimensional Array:

int[] numbers = new int[5]; // Declaration and initialization
numbers[0] = 10;
numbers[1] = 20;
// Accessing elements
Console.WriteLine(numbers[0]); // Output: 10

• Multi-Dimensional Array:

int[,] matrix = new int[2, 3]; // 2 rows, 3 columns
matrix[0, 0] = 1;
matrix[0, 1] = 2;
// Accessing elements
Console.WriteLine(matrix[0, 1]); // Output: 2

Collections in C#
Collections are classes in C# that are used to store and manage groups of related objects. They
provide more flexibility and functionality compared to arrays.

• List<T>: Dynamic array that stores elements of a specified type.
• Dictionary<TKey, TValue>: Collection of key-value pairs where each key is unique.
• Queue<T>: FIFO (First-In-First-Out) collection.
• Stack<T>: LIFO (Last-In-First-Out) collection.

using System;
using System.Collections.Generic;

public class Program
{
 public static void Main()
 {
 // List example
 List<int> numbers = new List<int>();
 numbers.Add(10);
 numbers.Add(20);
 Console.WriteLine(numbers[0]); // Output: 10

 // Dictionary example
 Dictionary<string, int> ages = new Dictionary<string, int>();
 ages.Add("Alice", 25);
 ages.Add("Bob", 30);
 Console.WriteLine(ages["Bob"]); // Output: 30

 }
}

Basic Operations on Collections
Collections support various operations such as adding, removing, accessing elements, iterating,
and sorting.

• Adding Elements:

List<int> numbers = new List<int>();
numbers.Add(10);

• Removing Elements:

numbers.Remove(10);

• Accessing Elements:

Console.WriteLine(numbers[0]);

• Iterating through Collection:

foreach (int num in numbers)
{
 Console.WriteLine(num);
}

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. How do you declare a single-dimensional array in C#?
o A) int[] numbers = new int[];
o B) int[] numbers = new int[5];
o C) array numbers = new array(5);
o D) array numbers = new int[5];

2. Which collection allows for key-value pairs?
o A) List<T>
o B) Array
o C) Dictionary<TKey, TValue>
o D) Stack<T>

Coding Tasks:

1. Write a program to sort an array of integers.

using System;

public class Program
{
 public static void Main()
 {
 int[] numbers = { 4, 2, 7, 1, 5 };

 // Sorting array
 Array.Sort(numbers);

 // Displaying sorted array
 foreach (int num in numbers)
 {
 Console.Write(num + " ");
 }
 Console.WriteLine();
 }
}

Problem-Solving Scenarios:

1. Explain a scenario where a Dictionary<TKey, TValue> would be more appropriate
than a List<T>.

o Scenario: Managing a phone book where each contact has a unique name and
associated phone number.

o Explanation: In this scenario, using a Dictionary<string, string> (where
string represents name and phone number) would be more appropriate than a
List<string>. This is because a Dictionary<TKey, TValue> allows efficient
lookup and retrieval of phone numbers by name (key-value pair), leveraging the
uniqueness of keys (names) compared to a List<string> which would not
provide efficient lookup operations.

Chapter 7: Exception Handling
Try, Catch, Finally Blocks
Exception handling in C# allows you to manage runtime errors gracefully. Key components
include try, catch, and finally blocks:

• Try Block: Contains code that may cause an exception.
• Catch Block: Handles exceptions that occur within the try block.
• Finally Block: Executes code after try block, whether an exception is thrown or not

(optional).

using System;

public class Program
{
 public static void Main()
 {
 int numerator = 10;
 int denominator = 0;

 try
 {
 int result = numerator / denominator; // Divide-by-zero exception
 Console.WriteLine($"Result: {result}");
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine("Error: Cannot divide by zero.");
 }
 finally
 {
 Console.WriteLine("Finally block executed.");
 }
 }
}

Throwing Exceptions
Exceptions can be explicitly thrown using the throw keyword to indicate abnormal conditions in
code execution.

public class Program
{
 public static void ValidateAge(int age)
 {
 if (age < 0)
 {
 throw new ArgumentException("Age cannot be negative.");
 }
 else
 {
 Console.WriteLine($"Valid age: {age}");
 }

 }

 public static void Main()
 {
 try
 {
 ValidateAge(-5); // Throws ArgumentException
 }
 catch (ArgumentException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

Custom Exceptions
Custom exceptions allow you to create specific exception types tailored to your application's
needs by deriving from Exception class.

public class InvalidUserInputException : Exception
{
 public InvalidUserInputException(string message) : base(message)
 {
 }
}

public class Program
{
 public static void ValidateInput(string input)
 {
 if (input.Length < 5)
 {
 throw new InvalidUserInputException("Input length must be at
least 5 characters.");
 }
 else
 {
 Console.WriteLine($"Valid input: {input}");
 }
 }

 public static void Main()
 {
 try
 {
 ValidateInput("Hi"); // Throws InvalidUserInputException
 }
 catch (InvalidUserInputException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. What is the purpose of the finally block?
o A) To handle exceptions
o B) To throw exceptions
o C) To execute cleanup code
o D) To declare custom exceptions

2. How do you throw an exception in C#?
o A) catch (Exception ex) { }
o B) throw new Exception("Message");
o C) try { }
o D) finally { }

Coding Tasks:
1. Write a program that handles divide-by-zero exceptions.

using System;

public class Program
{
 public static void Main()
 {
 int numerator = 10;
 int denominator = 0;

 try
 {
 int result = numerator / denominator; // Divide-by-zero exception
 Console.WriteLine($"Result: {result}");
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine("Error: Cannot divide by zero.");
 }
 }
}

Problem-Solving Scenarios:
1. Design a custom exception class for handling invalid user input.

using System;

public class InvalidUserInputException : Exception
{
 public InvalidUserInputException(string message) : base(message)
 {
 }
}

public class Program
{
 public static void ValidateInput(string input)
 {
 if (input.Length < 5)
 {
 throw new InvalidUserInputException("Input length must be at
least 5 characters.");
 }
 else
 {
 Console.WriteLine($"Valid input: {input}");
 }
 }

 public static void Main()
 {
 try
 {
 ValidateInput("Hi"); // Throws InvalidUserInputException
 }
 catch (InvalidUserInputException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

In this chapter, you've learned how to handle exceptions using try, catch, and finally blocks,
throw exceptions explicitly, and create custom exceptions to handle specific scenarios in your C#
programs effectively

Chapter 8: File I/O and Streams
Reading from and Writing to Files
File I/O (Input/Output) operations in C# involve reading from and writing to files using
StreamReader and StreamWriter classes.

• Reading from a File:

using System;
using System.IO;

public class Program
{
 public static void Main()
 {
 string filePath = "sample.txt";

 // Reading from a text file
 try
 {
 using (StreamReader reader = new StreamReader(filePath))
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
 }
 }
 catch (FileNotFoundException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

• Writing to a File:

using System;
using System.IO;

public class Program
{
 public static void Main()
 {
 string filePath = "output.txt";

 // Writing to a text file
 try
 {
 using (StreamWriter writer = new StreamWriter(filePath))
 {
 writer.WriteLine("Hello, World!");
 writer.WriteLine("This is a sample text.");
 }
 }

 catch (IOException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

Working with Streams
Streams in C# provide a uniform way to access input and output data. They are used for reading
or writing bytes of data.

• Reading from a Stream:

using System;
using System.IO;

public class Program
{
 public static void Main()
 {
 string filePath = "sample.txt";

 // Reading from a stream
 try
 {
 using (FileStream fileStream = new FileStream(filePath,
FileMode.Open))
 {
 byte[] buffer = new byte[1024];
 int bytesRead;
 while ((bytesRead = fileStream.Read(buffer, 0,
buffer.Length)) > 0)
 {
 Console.WriteLine($"Read {bytesRead} bytes.");
 }
 }
 }
 catch (IOException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

• Writing to a Stream:

using System;
using System.IO;

public class Program
{
 public static void Main()
 {
 string filePath = "output.txt";

 // Writing to a stream
 try

 {
 using (FileStream fileStream = new FileStream(filePath,
FileMode.Create))
 {
 byte[] data = System.Text.Encoding.UTF8.GetBytes("Hello,
World!");
 fileStream.Write(data, 0, data.Length);
 }
 }
 catch (IOException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

Handling File Exceptions
File-related operations can throw exceptions such as FileNotFoundException, IOException,
etc. It's essential to handle these exceptions to prevent application crashes and provide
meaningful error messages to users.

using System;
using System.IO;

public class Program
{
 public static void Main()
 {
 string filePath = "sample.txt";

 try
 {
 using (StreamReader reader = new StreamReader(filePath))
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
 }
 }
 catch (FileNotFoundException ex)
 {
 Console.WriteLine($"File not found: {ex.Message}");
 }
 catch (IOException ex)
 {
 Console.WriteLine($"IO Error: {ex.Message}");
 }
 }
}

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. Which class is used for reading text from a file?
o A) FileStream
o B) StreamReader
o C) StreamWriter
o D) FileReader

2. How do you handle file not found exceptions?
o A) Use try-catch block with FileNotFoundException
o B) Use try-catch block with IOException
o C) Use try-catch block with FileNotFound
o D) Use try-catch block with FileError

Coding Tasks:
1. Write a program to read a text file and print its content to the console.

using System;
using System.IO;

public class Program
{
 public static void Main()
 {
 string filePath = "sample.txt";

 try
 {
 using (StreamReader reader = new StreamReader(filePath))
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
 }
 }
 catch (FileNotFoundException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 catch (IOException ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 }
}

Problem-Solving Scenarios:

1. Explain how you would handle large files efficiently in C#.

o Handling Large Files Efficiently:
▪ Use buffered reading and writing (StreamReader, StreamWriter) to

minimize disk access.
▪ Process files in chunks rather than loading entire file into memory.
▪ Utilize asynchronous I/O operations (ReadAsync(), WriteAsync()) to

improve responsiveness.
▪ Implement proper error handling and recovery mechanisms for

uninterrupted file processing.

Chapter 9: Basic Understanding of LINQ
Introduction to LINQ
LINQ (Language Integrated Query) is a feature in C# that allows for querying data in a type-safe
manner directly from .NET objects, XML, SQL databases, and other data sources.

• Benefits of LINQ:
o Provides a unified syntax for querying different data sources.
o Type safety at compile-time.
o Enhances readability and maintainability of code.

Basic LINQ Queries
LINQ queries are written in a declarative syntax using keywords like from, where, select,
orderby, group by, etc.

• Example: Filtering and Selecting Data

using System;
using System.Linq;
using System.Collections.Generic;

public class Program
{
 public static void Main()
 {
 List<int> numbers = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // LINQ query to find all even numbers
 var evenNumbers = from num in numbers
 where num % 2 == 0
 select num;

 foreach (var num in evenNumbers)
 {
 Console.WriteLine(num); // Output: 2, 4, 6, 8, 10
 }
 }
}

Using LINQ with Collections
LINQ can be used with various types of collections (List<T>, Array, Dictionary<TKey,
TValue>, etc.) to perform operations such as filtering, sorting, grouping, and projecting data.

• Example: Using LINQ with List

using System;
using System.Linq;
using System.Collections.Generic;

public class Program
{

 public static void Main()
 {
 List<string> fruits = new List<string> { "apple", "banana", "cherry",
"date" };

 // LINQ query to filter fruits starting with 'a'
 var filteredFruits = from fruit in fruits
 where fruit.StartsWith("a")
 select fruit;

 foreach (var fruit in filteredFruits)
 {
 Console.WriteLine(fruit); // Output: apple
 }
 }
}

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. What does LINQ stand for?
o A) Language-Integrated Query
o B) Linked-Integrated Query
o C) Library-Integrated Query
o D) Logic-Integrated Query

2. Which method is used to filter a collection in LINQ?
o A) Filter()
o B) Find()
o C) Where()
o D) Select()

Coding Tasks:
1. Write a LINQ query to find all even numbers in a list.

using System;
using System.Linq;
using System.Collections.Generic;

public class Program
{
 public static void Main()
 {
 List<int> numbers = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // LINQ query to find all even numbers
 var evenNumbers = from num in numbers
 where num % 2 == 0
 select num;

 foreach (var num in evenNumbers)
 {
 Console.WriteLine(num); // Output: 2, 4, 6, 8, 10

 }
 }
}

Problem-Solving Scenarios:

1. Explain how LINQ can simplify querying collections compared to traditional loops.
o Simplification with LINQ:

▪ Readability: LINQ queries use a declarative syntax that is more readable
and closer to natural language.

▪ Ease of Use: Eliminates the need for nested loops and manual iteration
over collections.

▪ Type Safety: Provides compile-time type checking, reducing runtime
errors.

▪ Code Reusability: LINQ queries can be reused across different data
sources without modification.

o Example Comparison:

// Traditional approach with loops
List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };
List<int> evenNumbers = new List<int>();
foreach (int num in numbers)
{
 if (num % 2 == 0)
 {
 evenNumbers.Add(num);
 }
}

// Using LINQ
var evenNumbers = from num in numbers
 where num % 2 == 0
 select num;

In this comparison, LINQ simplifies the code by combining filtering and selecting
logic into a single readable statement, enhancing code maintainability and
reducing the potential for bugs.

Chapter 10: Basic Concepts of Debugging and Testing
Debugging Techniques
Debugging is the process of identifying and resolving errors or bugs in software applications.
Effective debugging techniques involve using tools and methods to locate and fix issues.

• Common Debugging Techniques:
o Using Breakpoints: Pauses code execution at specific points to examine program

state.
o Inspecting Variables: Checking the values of variables to understand their state.
o Logging: Adding log messages to track program flow and variable values.
o Stepping Through Code: Executing code line-by-line to trace execution paths.
o Debugging Tools: Utilizing integrated development environment (IDE) tools like

Visual Studio debugger.

Writing Unit Tests
Unit testing is a software testing method where individual units or components of a program are
tested to ensure they function as expected. In C#, unit tests are commonly written using
frameworks like NUnit, MSTest, or xUnit.

• Benefits of Unit Testing:
o Validates correctness of code behavior.
o Facilitates early bug detection and regression testing.
o Improves code quality and maintainability.
o Supports refactoring and code changes with confidence.

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. What is the purpose of a breakpoint in debugging?
o A) To terminate program execution
o B) To pause program execution at a specific point
o C) To skip over code sections
o D) To display error messages

2. Which framework is commonly used for unit testing in C#?
o A) JUnit
o B) NUnit
o C) Mockito

o D) PyUnit
Coding Tasks:

1. Write a simple unit test for a method that adds two numbers.

using System;
using NUnit.Framework;

public class Calculator
{
 public int Add(int a, int b)
 {
 return a + b;
 }
}

[TestFixture]
public class CalculatorTests
{
 [Test]
 public void Add_ShouldReturnSum()
 {
 // Arrange
 Calculator calculator = new Calculator();

 // Act
 int result = calculator.Add(3, 5);

 // Assert
 Assert.AreEqual(8, result);
 }
}

Problem-Solving Scenarios:

1. Explain a scenario where debugging helped you find and fix a critical bug.

Scenario Explanation:
o Issue: In a web application, users reported that they couldn't submit a form.
o Debugging Process:

▪ Step 1: Added breakpoints in form submission handler.
▪ Step 2: Stepped through code to track data flow and variable values.
▪ Step 3: Identified a validation logic error preventing form submission.
▪ Step 4: Fixed the validation condition and tested the fix.

o Outcome: Users were able to submit forms successfully after the bug fix,
demonstrating the effectiveness of debugging in resolving critical issues.

In this chapter, you've learned fundamental debugging techniques and the importance of writing
unit tests to ensure software reliability and maintainability. These practices are essential for
producing high-quality code and identifying and fixing bugs efficiently during development.

Chapter 11: Introduction to Visual Studio
Overview of the Visual Studio IDE
Visual Studio is an integrated development environment (IDE) used for developing software
applications across multiple platforms. It supports various programming languages, including
C#, and provides tools for coding, debugging, and deploying applications.

• Key Features of Visual Studio:
o Code Editor: Supports syntax highlighting, code completion, and refactoring.
o Solution Explorer: Organizes project files and folders.
o Tool Windows: Includes Solution Explorer, Properties, Output, Error List, and

more.
o Integrated Debugger: Facilitates debugging with breakpoints, watch windows,

call stack, and immediate window.
o NuGet Package Manager: Manages third-party libraries and dependencies.
o Version Control Integration: Supports Git, TFS, and other version control

systems.

Creating, Building, and Running a C# Project
Visual Studio simplifies the process of creating, building, and running C# projects.

• Steps to Create a New C# Project:
1. Open Visual Studio.
2. Go to File > New > Project....
3. Select Visual C# > Console App (.NET Core/.NET Framework).
4. Provide a name and location for the project.
5. Click Create to generate the project structure.

• Building and Running a C# Project:
o Build: Press Ctrl + Shift + B or go to Build > Build Solution.
o Run: Press F5 or go to Debug > Start Debugging (or Start Without

Debugging).

Using the Debugger
The Visual Studio debugger helps identify and fix issues in code during development.

• Debugger Features:
o Breakpoints: Pause execution at specific lines to inspect variables and program

state.
o Watch Windows: Monitor variable values and expressions.
o Call Stack: View the sequence of method calls leading to the current point in

execution.

o Immediate Window: Execute code and evaluate expressions during debugging.

End-of-Chapter Exercises:
Multiple-Choice Questions:

1. How do you create a new project in Visual Studio?
o A) File > New > Solution
o B) File > New > Project
o C) File > Open > Project
o D) File > Create > Project

2. Which window is used to view the call stack during debugging?
o A) Solution Explorer
o B) Properties
o C) Call Stack
o D) Output

Coding Tasks:

1. Create a new console application in Visual Studio and write a simple "Hello, World!"
program.

o Steps:
1. Open Visual Studio.
2. Go to File > New > Project....
3. Select Visual C# > Console App (.NET Core/.NET Framework).
4. Name your project and click Create.
5. Replace the generated code in Program.cs with the following:

using System;

class Program
{
 static void Main()
 {
 Console.WriteLine("Hello, World!");
 }
}

6. Press F5 to build and run the program.
Problem-Solving Scenarios:

1. Explain how you would use Visual Studio to debug a complex application.
o Debugging Complex Applications:

▪ Setting Breakpoints: Identify critical points in the code where you
suspect issues.

▪ Inspecting Variables: Use watch windows and immediate window to
monitor variable values.

▪ Analyzing Call Stack: Trace the sequence of method calls to understand
program flow.

▪ Handling Exceptions: Use exception handling and debugger to catch
and diagnose runtime errors.

▪ Performance Profiling: Use profiling tools to analyze and optimize
application performance.

o Example Scenario: Debugging a web application:
▪ Issue: Users report intermittent errors during checkout.
▪ Debugging Steps:

▪ Set breakpoints in checkout-related methods.
▪ Monitor session variables and database interactions.
▪ Analyze HTTP requests and responses for anomalies.
▪ Use logging and tracing to capture detailed information.
▪ Collaborate with team members using version control and remote

debugging tools.
In this chapter, you've explored the fundamentals of Visual Studio IDE, including project
creation, debugging techniques, and the essential tools for software development. Visual Studio
enhances productivity by providing robust features for coding, debugging, and deploying
applications efficiently.

Appendix
Appendix A: C# Programming Environment Setup
Installing Visual Studio

1. Download Visual Studio: Go to the Visual Studio website and download the
Community edition.

2. Install Visual Studio: Run the installer and select the workloads for .NET desktop
development.

3. Create a New Project: Open Visual Studio, go to File > New > Project, select
Console App (.NET Core/.NET Framework), and click Create.

Setting Up a C# Project

1. Create a Console Application:
o Open Visual Studio.
o Select Create a new project.
o Choose Console App and click Next.
o Name your project and click Create.

2. Write Your First Program:
o Open Program.cs.
o Replace the code with:

using System;

class Program
{
 static void Main()
 {
 Console.WriteLine("Hello, World!");
 }
}

o Press F5 to run the program.

Appendix B: Key C# Syntax and Commands
Data Types and Variables

• Declaration: int number;
• Initialization: int number = 5;
• Primitive Types: int, double, char, bool, string

Control Flow Statements
• If Statement:

if (condition)
{
 // code to execute
}

https://visualstudio.microsoft.com/

• For Loop:
for (int i = 0; i < 10; i++)
{
 // code to execute
}

• While Loop:
while (condition)
{
 // code to execute
}

Methods and Functions
• Declaration:

void MyMethod()
{
 // code to execute
}

• Invocation:
MyMethod();

Classes and Objects
• Class Definition:

class Person
{
 public string Name;
 public int Age;
}

• Object Creation:
Person person = new Person();

Appendix C: LINQ Examples
Basic LINQ Query
var numbers = new List<int> { 1, 2, 3, 4, 5 };
var evenNumbers = from num in numbers
 where num % 2 == 0
 select num;

LINQ with Methods
var evenNumbers = numbers.Where(num => num % 2 == 0).ToList();

Glossary
Array: A data structure that contains a collection of elements of the same type.
Class: A blueprint for creating objects, defining their data and behavior.
Constructor: A special method in a class used to initialize objects.
Debugging: The process of identifying and fixing errors in code.
Exception Handling: Mechanisms to handle runtime errors using try, catch, and finally blocks.
IDE (Integrated Development Environment): A software application that provides
comprehensive facilities to programmers for software development.
Inheritance: A mechanism by which one class can inherit properties and methods from another
class.
LINQ (Language Integrated Query): A set of features that adds query capabilities to the .NET
languages.
Method: A block of code that performs a specific task.
Object: An instance of a class.
Overloading: Defining multiple methods with the same name but different parameters.
Parameter: A variable used in a method to refer to one of the pieces of data provided as input to
the method.
Polymorphism: The ability of different classes to be treated as instances of the same class
through inheritance.
Stream: An abstract representation of a sequence of bytes, such as data from a file or a
network connection.
Variable: A storage location identified by a memory address and a symbolic name, used to store
data.
Visual Studio: An integrated development environment (IDE) from Microsoft used for
developing applications.

This appendix and glossary provide additional resources and definitions to support your
understanding of the concepts covered in the book.

	Overview
	Overview
	Chapter Summaries
	Chapter 1: Introduction to C# Programming This chapter introduces the basics of C# programming, including its history, key features, and the structure of a C# program. You'll learn how to write, compile, and run your first C# program, gaining an understanding of the development workflow.
	Chapter 2: Data Types, Variables, and Operators Explore the fundamental building blocks of C# programming: data types, variables, and operators. This chapter covers primitive data types, variable declaration and initialization, various operators, and type conversion techniques.
	Chapter 3: Control Flow Statements Learn how to control the flow of your programs using conditional statements, looping constructs, and jump statements. This chapter explains if-else conditions, switch cases, for loops, while loops, and the use of break and continue statements.
	Chapter 4: Methods and Functions Delve into methods and functions, essential for organizing and modularizing your code. Topics include method declaration, invocation, overloading, parameter passing, and return types, providing you with the skills to create reusable and maintainable code.
	Chapter 5: Object-Oriented Programming (OOP) Basics Understand the principles of object-oriented programming, a core concept in C#. This chapter covers classes, objects, fields, properties, methods, constructors, destructors, access modifiers, inheritance, and polymorphism, enabling you to design robust and scalable applications.
	Chapter 6: Arrays and Collections Master the use of arrays and collections to handle groups of data efficiently. You'll learn about single-dimensional and multi-dimensional arrays, and explore collections such as lists, dictionaries, and other key-value pair structures.
	Chapter 7: Exception Handling Gain knowledge on how to handle runtime errors gracefully using exception handling mechanisms. This chapter covers try, catch, and finally blocks, throwing exceptions, and creating custom exceptions to ensure your programs can manage unexpected situations.
	Chapter 8: File I/O and Streams Learn to read from and write to files using streams. This chapter provides an overview of file handling in C#, including reading from and writing to text files, working with streams, and handling file-related exceptions for robust file I/O operations.
	Chapter 9: Basic Understanding of LINQ Discover the power of Language Integrated Query (LINQ) for querying collections in C#. This chapter introduces LINQ syntax, basic LINQ queries, and demonstrates how LINQ simplifies data manipulation compared to traditional looping constructs.
	Chapter 10: Basic Concepts of Debugging and Testing Understand essential debugging techniques and the importance of unit testing. This chapter covers the use of breakpoints, step-through debugging, and writing unit tests to ensure your code is reliable and free of bugs.
	Chapter 11: Introduction to Visual Studio Get familiar with Visual Studio, the powerful IDE for C# development. Learn how to create, build, and run C# projects, and utilize the debugger to troubleshoot and refine your applications.
	End-of-Chapter Exercises
	Appendices and Glossary
	Conclusion

	Table of Contents
	Chapter 1: Introduction to C# Programming
	Chapter 2: Data Types, Variables, and Operators
	Chapter 3: Control Flow Statements
	Chapter 4: Methods and Functions
	Chapter 5: Object-Oriented Programming (OOP) Basics
	Chapter 6: Arrays and Collections
	Chapter 7: Exception Handling
	Chapter 8: File I/O and Streams
	Chapter 9: Basic Understanding of LINQ
	Chapter 10: Basic Concepts of Debugging and Testing
	Chapter 11: Introduction to Visual Studio
	Appendix
	Glossary

	Chapter 1: Introduction to C# Programming
	Introduction to C#
	The Structure of a C# Program
	Writing, Compiling, and Running a C# Program
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 2: Data Types, Variables and Operators
	Primitive Data Types
	Variable Declaration and Initialization
	Operators in C#
	Type Conversion
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 3: Control Flow Statements
	Conditional Statements
	Looping Statements
	Jump Statements
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 4: Methods and Functions
	Method Declaration and Invocation
	Method Overloading
	Parameter Passing
	Return Types
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Problem-Solving Scenarios:

	Chapter 5: Object-Oriented Programming (OOP) Basics
	Classes and Objects
	Fields, Properties, and Methods
	Constructors and Destructors
	Access Modifiers
	Inheritance and Polymorphism
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 6: Arrays and Collections
	Single-Dimensional and Multi-Dimensional Arrays
	Collections in C#
	Basic Operations on Collections
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 7: Exception Handling
	Try, Catch, Finally Blocks
	Throwing Exceptions
	Custom Exceptions
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 8: File I/O and Streams
	Reading from and Writing to Files
	Working with Streams
	Handling File Exceptions
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 9: Basic Understanding of LINQ
	Introduction to LINQ
	Basic LINQ Queries
	Using LINQ with Collections
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 10: Basic Concepts of Debugging and Testing
	Debugging Techniques
	Writing Unit Tests
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Chapter 11: Introduction to Visual Studio
	Overview of the Visual Studio IDE
	Creating, Building, and Running a C# Project
	Using the Debugger
	End-of-Chapter Exercises:
	Multiple-Choice Questions:
	Coding Tasks:
	Problem-Solving Scenarios:

	Appendix
	Appendix A: C# Programming Environment Setup
	Installing Visual Studio
	Setting Up a C# Project
	Appendix B: Key C# Syntax and Commands
	Data Types and Variables
	Control Flow Statements
	Methods and Functions
	Classes and Objects
	Appendix C: LINQ Examples
	Basic LINQ Query
	LINQ with Methods

	Glossary
	Array: A data structure that contains a collection of elements of the same type.
	Class: A blueprint for creating objects, defining their data and behavior.
	Constructor: A special method in a class used to initialize objects.
	Debugging: The process of identifying and fixing errors in code.
	Exception Handling: Mechanisms to handle runtime errors using try, catch, and finally blocks.
	IDE (Integrated Development Environment): A software application that provides comprehensive facilities to programmers for software development.
	Inheritance: A mechanism by which one class can inherit properties and methods from another class.
	LINQ (Language Integrated Query): A set of features that adds query capabilities to the .NET languages.
	Method: A block of code that performs a specific task.
	Object: An instance of a class.
	Overloading: Defining multiple methods with the same name but different parameters.
	Parameter: A variable used in a method to refer to one of the pieces of data provided as input to the method.
	Polymorphism: The ability of different classes to be treated as instances of the same class through inheritance.
	Stream: An abstract representation of a sequence of bytes, such as data from a file or a network connection.
	Variable: A storage location identified by a memory address and a symbolic name, used to store data.
	Visual Studio: An integrated development environment (IDE) from Microsoft used for developing applications.

